Fast and Robust Real-Time Estimation of Respiratory Rate from Photoplethysmography
نویسندگان
چکیده
Respiratory rate (RR) is a useful vital sign that can not only provide auxiliary information on physiological changes within the human body, but also indicate early symptoms of various diseases. Recently, methods for the estimation of RR from photoplethysmography (PPG) have attracted increased interest, because PPG can be readily recorded using wearable sensors such as smart watches and smart bands. In the present study, we propose a new method for the fast and robust real-time estimation of RR using an adaptive infinite impulse response (IIR) notch filter, which has not yet been applied to the PPG-based estimation of RR. In our offline simulation study, the performance of the proposed method was compared to that of recently developed RR estimation methods called an adaptive lattice-type RR estimator and a Smart Fusion. The results of the simulation study show that the proposed method could not only estimate RR more quickly and more accurately than the conventional methods, but also is most suitable for online RR monitoring systems, as it does not use any overlapping moving windows that require increased computational costs. In order to demonstrate the practical applicability of the proposed method, an online RR estimation system was implemented.
منابع مشابه
A Robust Fusion Model for Estimating Respiratory Rate from Photoplethysmography and Electrocardiography
Objective: Respiratory rate (RR) estimation algorithms based on the photoplethymogram (PPG) and electrocardiogram (ECG) lack clinical robustness. This is because the PPG and ECG respiratory modulations are dependent on patient physiology, regardless of general signal quality. The present work describes an RR estimation algorithm using respiratory quality indices (RQIs) which assess the presence...
متن کاملCross Time-Frequency Analysis for Combining Information of Several Sources: Application to Estimation of Spontaneous Respiratory Rate from Photoplethysmography
A methodology that combines information from several nonstationary biological signals is presented. This methodology is based on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency analysis method, based on quadratic time-frequency distribution, has been used for combining information of several nonstationary biomedical si...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملRobust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کاملPhotoplethysmography: Design, Development, Analysis and Applications in Clinical and Physiological Measurement – A Review
Photoplethysmography is a non-invasive, electro-optical technique for detecting the cardiovascular pulse wave generated by elastic nature of the peripheral vascular arteries by the contraction of heart. Photoplethysmogram (PPG), a pulse wave generated varies in accordance to blood volume changes in the microvascular bed of a tissue. This review paper emphasizes on the earlier works on the desig...
متن کامل